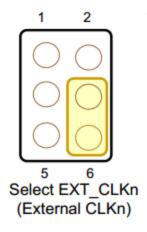
分類/Classification	□ tDS □ tGW		☐ PETL/tET/t	PET □ DS/PDS/PF	DS 🗆	□ tM-752N	
	☑ I/O Card		□ VXC Card	☐ VxComm		☐ Other	
作者/Author	Albert		日期/Date	2015-04-02	編號/No.	FAQ-025	

Q: How do I use a PCI-TMC12A module to measure external frequencies?

A: The following describes the Measurement Principles and Jumper Settings for measuring external frequencies, together with an example.


- Measurement Principles: Measure the number of external pulses within a defined period of time, and then calculate the frequency.
- Jumper Settings: Select the external clock via the Jumper.

For more detailed information related to jumper selection, refer to section 2.4.3 in the PCI-TMC12A User Manual, which can be downloaded from:

http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pci-tmc12a/manual/pci-tmc12 user manual.pdf

Example: The following example demonstrates how to use Counter 1 on the PCI-TMC12A to measure an unknown signal frequency.

Step1: Use jumper J22 to set the clock source to the external clock, as illustrated below.

Step2:

Connect the External CLK pin to CON1.ECLK1 (Pin 1).

Connect the External GND pin to CON1.GND (Pin 19).

Refer to the sample code below for an illustration of the implementation.

Example: Using the UniDAQ Driver

```
wRtn=Ixud DriverInit(&wTotalBoards);
wRtn=Ixud GetCardInfo(i,&DevInfo,&CardInfo,szModelName);
wBoardNo = 0;
wChannel = 1; //Set the timer counter to counter 1
wMode = 0; //Set the timer counter to mode 0
dwValue = 0xFFFF; //Set the countdown value
wRtn = Ixud SetCounter(wBoardNo,wChannel,wMode, dwValue);
//Initialize the timer counter
wRtn = Ixud WritePort(DevInfo.dwBAR[2]+0x18,16,0<<wChannel);
wRtn = Ixud_WritePort(DevInfo.dwBAR[2]+0x18,16,1<<wChannel);
wRtn = Ixud WritePort(DevInfo.dwBAR[2]+0x18,16,0<<wChannel);
wRtn = Ixud WritePort(DevInfo.dwBAR[2]+0x18,16,1<<wChannel);
wRtn = Ixud_WritePort(DevInfo.dwBAR[2]+0x18,16,0<<wChannel);
//Measure the external frequency
wRtn = Ixud_ReadCounter(wBoardNo,wChannel, &CounterInit); //Read the initial value of Counter 1
QueryPerformanceFrequency (&liFrequency); //Read the frequency of the hardware
QueryPerformanceCounter (&liStart); //Read the starting time
Sleep (500);
QueryPerformanceCounter (&liStop); //Read the ending time
wRtn = Ixud_ReadCounter(wBoardNo,wChannel, &CounterFinal); //Read the termination value for
Counter 1
Time = (liStop-liStart)/liFrequency; //Calculate the elapsed time
UnknownFre=(CounterInit - CounterFinal)/Time; //Calculate the External frequency
wRtne=Ixud DriverClose();
```

Example: Using the Classic Driver

```
wRtn=PTMC12 DriverInit();
wTotalBoards=PTMC12 DetectBoards();
wBoardNo = 0;
wChannel = 1; //Set the timer counter to counter 1
wMode = 0; //Set the timer counter to mode 0
dwValue = 0xFFFF; //Set the countdown value
wRtn=PTMC12_OpenBoard(wBoardNo,0);
wRtn=PTMC12 WriteCounter(wBoardNo,wChannel,wMode,dwValue);
//Initialize the timer counter
wRtn = PTMC12_WriteWord(wBoard,0x18,0<<wChannel);
wRtn = PTMC12 WriteWord(wBoard,0x18,1<<wChannel);</pre>
wRtn = PTMC12 WriteWord(wBoard,0x18,0<<wChannel);</pre>
wRtn = PTMC12_WriteWord(wBoard,0x18,1<<wChannel);</pre>
wRtn = PTMC12 WriteWord(wBoard,0x18,0<<wChannel);
//Measure the external frequency
wRtn = PTMC12_ReadCounter(wBoard,wChannel,CounterInit); //Read the initial value of Counter 1
QueryPerformanceFrequency (&liFrequency); //Read the frequency of the hardware
QueryPerformanceCounter (&liStart); //Read the starting time
Sleep (500);
QueryPerformanceCounter (&liStop); //Read the ending time
wRtn = PTMC12 ReadCounter(wBoard,wChannel,CounterFinal); //Read the termination value for Counter
1
Time = (liStop-liStart)/liFrequency; //Calculated the elapsed time
UnknownFre=(CounterInit - CounterFinal)/Time; //Calculate the external frequency
wRtn=PTMC12 CloseBoard(wBoardNo);
```